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Abstract
Communication in noise differs in a fundamental way from communication without noise, because
a receiver faces four possible outcomes every time it checks its input. These outcomes present
inevitable trade-offs for a receiver in adjusting its threshold for response. A signaler also faces
trade-offs, in this case between costs and benefits as the exaggeration of signals increases. Fur-
thermore, a receiver’s and signaler’s performances are mutually interdependent. The utility of a
receiver’s threshold depends on the signaler’s exaggeration (the level of the signal in relation to
the level of noise), and the utility of a signaler’s exaggeration depends on the receiver’s threshold.
Diminishing returns for both receiver and signaler suggest the possibility of a joint evolutionary
equilibrium for a receiver’s threshold and a signaler’s exaggeration. The present analysis combines
previous expressions for the utility of a receiver’s threshold (Ur) and the utility of a signaler’s ex-
aggeration (Us) in order to explore the possibility of this joint equilibrium. Utilities for both parties
are expressed as survival × fecundity, an approximate measure of the spread of genes associated
with a phenotype. Thus, Ur and Us, as functions of both the receiver’s threshold (t) and the sig-
naler’s exaggeration (e), represent the adaptive landscapes for each party, and the reciprocal partial
derivatives of these utilities, ∂Ur/∂e and ∂Us/∂t , approximate the selection gradients for the re-
ceiver’s threshold and the signaler’s exaggeration. With parameters for both the receiver’s and the
signaler’s performances set to plausible values for many cases of mate choice, the resulting analysis
shows that there exists a joint optimum for the receiver’s threshold and the signaler’s exaggeration.
This optimum is a Nash equilibrium at which neither party can do better by a unilateral change in
behavior. In some conditions, the equilibrium for communication in mate choice occurs at a higher
threshold and higher exaggeration than the equilibrium for communication with warning signals. In
general, these results indicate that the normal situation for communication in noise is honesty with
deception — honesty on average but with instances of disadvantageous outcomes for receivers or
signalers. Furthermore, the relationship between honesty and costs is more complex than currently
recognized. Most important, the joint optimum for receiver and signaler indicates that communi-
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cation in noise cannot escape the problems created by noise. Noise is an inevitable component of
communication, and perfection in communication is not expected in natural conditions.

Keywords
signal detection, correct detection, false alarm, missed detection, signal exaggeration, mate
choice, warning signal, signal costs, honesty, deception, sexual selection, evolution of com-
munication.

1. Introduction

Questions about the evolution of communication have proliferated in recent
decades, since Dawkins & Krebs (1978) emphasized that signalers and re-
ceivers often have conflicting interests. Since then theoretical, observational
and experimental studies have dealt with questions such as, do signals com-
municate information?, what ensures honesty?, how do signaler and receiver
converge on similar meanings of signals?, and how can communication
evolve when signalers have no benefits in the absence of appropriate re-
ceivers and vice versa? During the same decades, investigations of mate
choice and prey choice have also proliferated. These interactions consist pri-
marily of communication, so some of the same questions arise in their study.
In this welter of recent work on the evolution of communication, almost none
has considered the consequences of noise.

Noise has featured more prominently in research on signal design, the
properties of signals that minimize attenuation and degradation and maxi-
mize contrast with the background. The underlying objective of this research
has been to explain how signals might evolve to increase the efficacy of
communication in noise (Wiley & Richards, 1982; Endler, 1992; Brumm
& Naguib, 2009). Theory has also addressed the consequences of noise for
the evolution of communication. This work has identified the principal man-
ifestation of noise — variable responses to a signal. It turns out, however,
that statistical variance in responses does not change the equilibria of evolu-
tion (the evolutionarily stable states), so long as the mean response does not
change (Grafen, 1990; Johnstone & Grafen, 1992).

In parallel with this work on the evolution of communication, the theory
of signal detection in noise has developed in the past half century into a vast
literature (Green & Swets, 1966; Macmillan & Creelman, 1991; Macmillan,
2002). Originally applied to procedures for evaluating the performance of
receivers in psychophysical experiments, it now provides the rationale for
analyzing responses in a wide range of psychological studies.
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Signal detection theory has more recently been extended to the evolution
of receivers (Wiley, 1994, 2006). This approach suggests that the perfor-
mance of receivers should evolve in accordance with the payoffs for erro-
neous and correct responses. It becomes clear that parameters critical for
evaluating a receiver’s performance are rarely if ever measured in studies of
communication. Yet even if the theory of signal detection can help to ex-
plain the behavior of receivers, it cannot provide a complete explanation for
the evolution of communication, because the optimal behavior of receivers
depends on the behavior of signalers. Signalers influence the relationship of
signal to noise for receivers, by altering the intensity, attenuation, degrada-
tion, and contrast of signals. On the other hand, the behavior of receivers
alters the probability of responses to signals. The question, thus, remains:
How does the interaction of signaler and receiver evolve?

The purpose of this paper is to combine the theory of signal detection
with a model of signal production to explore the co-evolution of signaler
and receiver. Because the ramifications of this topic are so numerous, the
analysis here focuses on a particular case — communication in mate choice.
It assumes the prevalent situation in which males produce signals to induce
females to mate with them, and females can respond to these signals. Males,
the signalers, incur benefits and costs as a result of producing signals, and
females, the receivers, incur benefits and costs as a result of their responses.
Unlike previous treatments of this situation, the present approach assumes
that females must make their decisions in the presence of noise. In other
words, females sometimes make errors in their responses to signals.

In this approach a receiver’s optimal threshold for response depends on the
intensity of the signal in relation to noise, in other words, the signal/noise
ratio or the exaggeration of the signal. Conversely, the signaler’s optimal
level of exaggeration depends on the receiver’s criterion for response, in
other words, its selectivity or choosiness or, in simple cases, its threshold
for response. A search of these optima reveals a joint optimum, a Nash
equilibrium, at which each party does the best it can, provided the other
does the same. The location of this joint optimum depends on the payoffs for
the receiver and the signaler and on the probabilities of signaling and paying
attention, by the signaler and the receiver, respectively.

Under plausible conditions for mate choice, there is a joint optimum with
a higher threshold for a receiver (greater choosiness) and a higher level of
exaggeration for a signaler than in other examples of communication, such
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as warning calls in the presence of a predator. At the joint optimum, commu-
nication overall is honest, although in particular instances of communication
receivers remain susceptible to deception by inappropriate signalers and sig-
nalers remain susceptible to exploitation by inappropriate receivers (such as
eavesdroppers, predators, or parasites). The evolution of communication in
noise, thus, reaches a joint optimum that falls short of perfection. The equi-
librium is not a Pareto point, at which neither party can do better. Receivers
sometimes make mistakes, and signalers are sometimes frustrated.

2. Methods

2.1. The signal detection paradigm

The feature of signal detection that makes a joint optimum of signaler and
receiver possible is the inescapable trade-offs faced by a receiver in decid-
ing whether or not to respond (Wiley & Richards, 1982; Wiley, 1994). The
characteristic of noise is two distinct kinds of error by receivers, errors of
commission and omission. Noise is not just an increase in variance of re-
sponses. On the contrary, it is impossible to minimize the two kinds of error
simultaneously. Decreasing the probability of one increases the probability
of the other.

This trade-off is apparent in a diagram of signal detection in noise (Fig-
ures 1 and 2). A signal in this case is any pattern of energy or matter that
evokes a response more often than randomly but does not provide all of the
power for the response. Because the receiver provides some, often most, of
the power for the response, the receiver must decide when to respond. A re-
ceiver must, therefore, consist of three components: a sensory mechanism,
a mechanism to associate activity in the sensor with a particular response,
and a mechanism to amplify the response. A receiver’s sensor has a mean
level of activity (with a variance) in the absence of a signal. A signal pro-
vides enough power to raise this level of activity, so that during a signal the
activity in the sensor has a higher mean level and (if the signal includes its
own variation) a higher variance (for further discussion of these points, see
Wiley, 1994, 2006, 2013a, b).

A receiver in this situation must adopt some criterion for a response.
The simplest criterion is a threshold (Figure 1). If activity in the sensor
exceeds the threshold, the receiver responds. Otherwise, it does not. Note
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Figure 1. An example of signal detection in noise. The receiver’s sensor has a probability
distribution of activity for noise only and for noise plus a signal. In this example, these prob-
ability distribution functions (PDFs) have means = 0.0 and 2.0, respectively, and standard
deviations = 1.0. The receiver sets a criterion for response, in this case a threshold level of
activity in its sensor. This threshold in combination with the PDFs for noise and signal plus
noise determine the probabilities of correct detection (pD, the hatched area to the right of
the threshold under the PDF for signal plus noise), false alarm (pF, the area to the right of
the threshold under the PDF for noise only), missed detection, and correct rejection (pM and
pR, the areas to the left of the threshold under the PDFs for signal plus noise and for noise
only, respectively). The hatched area, corresponding to pD, provides an example of how one
of these probabilities is calculated. If the receiver increases its threshold for response, pF
decreases but pM increases (also pD decreases and pR increases). If it lowers its threshold,
the consequences reverse.

that the receiver only ‘knows’ two states of the world — sensor-activity-
above-threshold or not. It is reasonable to presume that receivers can evolve
a threshold at any level of sensor activity. Wherever the threshold is located,
a receiver faces four possible outcomes each time it checks the activity of
its sensor (in other words, pays attention) and decides to respond or not
(Figure 1). If a signal is present and activity in the sensor is above threshold,
the receiver responds, an instance of a correct detection (D). If activity in the
sensor at that moment is below the threshold, the receiver fails to respond,
a missed detection (M). When a signal is not present, two corresponding
possibilities arise, either a false alarm (response but no signal, F) or a correct
rejection (no signal, no response, R). Provided the distribution of activity by
the sensor in the presence of a signal overlaps the distribution in the absence



962 Receiver–signaler equilibrium

Figure 2. The exhaustive set of mutually exclusive outcomes each time a receiver samples
its sensor and decides to respond or not. If the receiver benefits on average from its decisions
(usually because a correct detection has advantages for the receiver), then two of the outcomes
(false alarm and missed detection) are usually errors with disadvantages for the receiver.

of a signal, there are four possible outcomes every time a receiver checks its
sensor (Figures 1 and 2).

Inspection of Figure 1 shows that a receiver can reduce its probability
of a missed detection by lowering its threshold, but it thereby increases its
probability of a false alarm. Raising its threshold can decrease false alarms
but inevitably increases missed detections. Whenever noise and signal cannot
be completely separated by the receiver’s sensor, the two kinds of error
cannot be concurrently minimized.

This model incorporates the essential feature of signal detection, the in-
evitable trade-off faced by a receiver. There are several points that need
emphasis. First, noise is pervasive in communication. It is likely that all
communication in natural situations occurs in the presence of overlapping
distributions of noise with and without a signal. This expectation is rein-
forced by a result of the present analysis, which indicates that the joint
optimum for signaler and receiver is unlikely to result in perfect commu-
nication. Diminishing returns of the approach to perfection guarantee noisy
communication.

Second, an error by a receiver, in any analysis of the evolution of commu-
nication, is a decision that does not increase as much as possible the spread
of its genes. An approximate measure of the spread of genes is the expected
number of individual’s genes in the next generation (its survival × fecun-
dity). If a correct detection of a signal increases the receiver’s survival or
fecundity, but a missed detection or false alarm decreases them, then the lat-
ter two decisions are errors by the receiver.
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Third, a receiver’s criterion for a response can vary in complexity. A cri-
terion for response might be a simple threshold, or it might be sophisticated
human cognition. A criterion can be a highly tuned filter for particular fea-
tures of stimulation. The complexity or selectivity of a criterion does not,
however, change the inevitability of noise nor the trade-off between false
alarms and missed detections (for more discussion of these points see Wiley,
1994, 2006).

2.2. The receiver’s optimal performance

The first step in understanding the evolution of communication in noise is
to find the optimal location of the receiver’s threshold. To do so, it is nec-
essary to define the overall utility of any threshold in terms of the receiver’s
survival × fecundity, the expected number of an individual’s genes passing
to the next generation. If fecundity and survival vary with the location of
the receiver’s threshold, then this product is a measure of selection on the
location of the threshold. Because the four possible outcomes whenever a
receiver checks its sensor are an exhaustive classification of mutually exclu-
sive alternatives, the expected utility of a particular threshold is the sum of
the probabilities of each outcome and its payoff (with each payoff expressed
as survival × fecundity). The receiver’s expected utility is thus:

Ur = ps(pDdr + (1 − pD)mr) + (1 − ps)(pFfr + (1 − pF)rr)

where ps = probability of a signal in a (usually brief) interval of time, pD =
probability of a correct detection (D) provided a signal has occurred, 1 −
pD = probability of a missed detection (M) provided a signal has occurred,
pF and 1 − pF are analogous probabilities for a false alarm (F) and a correct
rejection (R), the two possible outcomes when a signal has not occurred. dr,
mr, fr and rr are the payoffs for the four outcomes, D, M, F and R (Table 1).

A receiver must receive a net benefit on average as a result of participat-
ing in communication, otherwise selection would eliminate responding to
the signal. Consequently, some of the four outcomes must provide a positive
payoff. Normally a correct detection would have the highest payoff in com-
parison to a correct rejection. In contrast, the two kinds of error, false alarm
and missed detection, would often have adverse consequences and, thus, low
payoffs in comparison to a correct rejection.

The optimal threshold for a receiver is the one that maximizes its expected
utility, Ur. A previous analysis of the receiver’s operating characteristic
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Table 1.
Parameters for the analysis of communication in noise (with default values for communica-
tion in mate choice when not otherwise specified in the text).

Properties of noise
Mean level of noise in the receiver’s sensor = 0
Standard deviation of noise = 1.0

Receiver’s parameters
Ur Receiver’s overall utility
dr Payoff for a correct detection (D) = 2.0
mr Payoff for a missed detection (M) = 1.0
fr Payoff for a false alarm (F) = 0.5
rr Payoff for a correct rejection (R) = 1.0
pD Probability of a correct detection
pM Probability of a missed detection (= 1 − pD)
pF Probability of a false alarm
pR Probability of a correct rejection (= 1 − pF)
t Location of the receiver’s threshold (level of activity in a sensor >0)
ps Probability of a signal occurring in any unit of time = 0.5 (see also below)

Signaler’s parameters
Us Signaler’s overall utility
bs Benefit as a result of a correct detection by a receiver = 2.0
ns Benefit when a receiver does not respond to a signal = 1.0
s0 Proportionate change in survival when no signal is produced = 1.0
cm Marginal change in survival as a result of producing a signal = −0.01
ss Survival as a result of producing a signal (= s0 + cme)
ps Probability of producing a signal in any unit of time = 0.5
e Exaggeration (level or magnitude) of a signal > 0

Alteration of a signal during transmission (not included in the current analysis)
Attenuation (relative reduction of signal level or exaggeration) = 1.0
Degradation (relative increase in signal variance) = 1.0

(ROC) showed that, for a particular signal/noise ratio, the optimal thresh-
old depends on the slope of the indifference curve tangential to the ROC
(Wiley, 1994):

(1 − ps)(rr − fr)/ps(dr − mr).

The optimal threshold is high when this slope is high and, thus, ps and
(dr − mr)/(rr − fr) are low, and the optimal threshold is low when these
parameters are low. A low threshold is termed ‘adaptive choosiness’, because
missed detections are relatively frequent (but false alarms are infrequent).

low

high. A high
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A low threshold is ‘adaptive gullability’, because false alarms are frequent
(but missed detections are not) (Wiley, 1994).

A more general analysis, presented below, calculates Ur as a function of
both the receiver’s threshold (t) and the level of the signal (its exaggera-
tion, e) in relation to the noise in a receiver’s sensor,

Ur = f (t, e).

For this analysis, the level of activity in a receiver’s sensor in the presence
of noise is assumed to have a truncated normal probability density function
(PDF) with mean = 0 and standard deviation = 1.0 (Figure 3). Thus, levels
of activity in the sensor when a signal is present are scaled with respect to a
the standard deviation of noise in the sensor (a level of 2.0 in the presence of
a signal means that the difference between the mean levels of noise and of
signal plus noise is twice as great as the standard deviation of noise alone).
The analysis assumes that a signal does not increase the variance (as opposed
to the mean) of the activity of the receiver’s sensor. In other words, it assumes

Figure 3. Examples of truncated normal distributions. The normal distribution (error func-
tion) expresses point probabilities for values between −∞ and +∞ and has a cumulative
probability of all possible values = 1.0. Activity in any receiver’s sensor, in contrast, only
takes values ! 0. These truncated normal distributions express probabilities in proportion
to the cumulative probability for values ! 0. This proportionality preserves the cumulative
probability = 1.0 for all possible values of sensor activity. Possible probability density func-
tions and cumulative density functions of activity in a receiver’s sensor are shown for noise
and for signal plus noise. An example of a receiver’s threshold is also shown. The CDFs for
a level of activity in the receiver’s sensor at the threshold indicate pF or pD, in the cases of
noise only or signal plus noise, respectively.

1 - Cumulative Probability
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there is no additional variation introduced by the signaler, by transmission,
or by transduction in the sensor. This assumption is discussed further below.

For any level of signal plus noise, it is possible to find the level of the
receiver’s threshold that maximizes its expected utility by solving the partial
differential equation,

∂Ur/∂t = 0, e constant,

and checking the second derivative or inspecting Ur = f (t) for all relevant
levels of signal plus noise, e. Note that for every level of activity in the
receiver’s sensor, e, the probabilities of the four outcomes require recalcula-
tion. As a consequence the equation above can only be solved with numerical
methods. Mathematica 8.0.4 was used to find these solutions. A combination
of procedures D, FindRoot and Max yields the same results as procedure
FindMaximum.

2.3. The signaler’s optimal exaggeration

The signaler can evoke a response from an appropriate receiver by produc-
ing a signal with enough power to affect activity of the receiver’s sensor.
It is plausible to assume a proportionality between the level of the signal
produced by the signaler and the level of activity in the receiver’s sensor.
Although signals are normally affected by spherical spreading and attenua-
tion during transmission, nevertheless the power arriving at a receiver at any
distance remains proportional to the power at the source (despite the dispro-
portionate decrease in power with distance). The level of the signal at the
source is, therefore, called its exaggeration.

The production of a signal plausibly incurs a cost, in energy expended,
risks taken, or opportunities lost. These costs are likely to be (and are here
assumed to be) proportional to the level of a signal, at least within some range
of signal level. For any analysis of the evolution of communication, the cost
of a signal should be measured in units of survival × fecundity. Challenging,
although feasible, this task remains an objective for the future.

The present analysis assumes that producing a signal reduces the sig-
naler’s survival in inverse proportion to the exaggeration of the signal (Fig-
ure 4, top):

ss = s0 + cme,

where s0 = survival when no signaling occurs and cm = the marginal cost
of increased signaling ("0). By setting s0 = 1, the actual survival becomes
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Figure 4. Honesty in advertising when signalers differ in intrinsic survival (survival in the
absence of signaling, top) or in marginal costs of exaggeration (middle). Each plot shows sur-
vival as a function of exaggeration for each of two signalers (sloping lines) and also their
survival × fecundity (convex lines). Vertical lines indicate the level of exaggeration that
would maximize each signaler’s survival × fecundity. Both signalers realize the same fe-
cundity as a function of exaggeration of their signals, as would happen if receivers responded
solely to signals and could not directly judge signalers’ quality. The scales of the axes are
linear but otherwise unspecified; the vertical scale would usually differ for survival and fe-
cundity (survival is always " 1.0). Changes in scale do not affect the ranking of signalers’
optimal levels of exaggeration. Signalers of lower quality (either intrinsic or marginal sur-
vival) always have lower optimal levels of exaggeration. The situation is more complicated
(bottom) if the lines for signalers’ survival cross or if signalers with lower intrinsic quality
also have sufficiently lower marginal costs of exaggeration (see text for further discussion).
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a proportion of the maximal survival in the absence of signaling (ss = s0 =
1.0 when cm = 0). Because costs must also rise with the rate of signaling,
the signaler’s marginal cost of signaling is multiplied by his probability of
signaling in any small interval of time, ps. Recall that the probability of a
signal also affects the receiver’s performance.

A signaler receives a benefit (bs) when an appropriate receiver responds
in a way that raises the signaler’s survival × fecundity. For instance, in
the case of mate choice, a female’s response might promote mating with
a male signaler and, thus, an increase in the signaler’s expected fecundity. In
the absence of producing a signal, a male presumably would have a lower
probability of mating and, thus, lower expected fecundity. Setting the sig-
naler’s survival × fecundity in the absence of a response (ns) = 1.0 makes
bs proportional to the signaler’s survival × fecundity in the absence of com-
munication.

Note that the signaler’s utility is not strictly proportional to the exaggera-
tion of the signal. Instead it depends on the receiver’s threshold in relation to
the level of the signal, which fixes the probabilities of the four outcomes for
the receiver. The higher the receiver’s threshold, the lower the probability of
a correct detection and, thus, the lower the probability of a response to the
signal. The present approach, therefore, calculates the expected utility for a
signaler as a function of the receiver’s threshold and the level of exaggeration
of the signal:

Us = psss(pDbs + (1 − pD)ns) + (1 − ps)s0ns

where ss = s0 + cme, as above, pD, pF, dr, mr, fr and rr are the probabilities
and payoffs of the receiver’s outcomes, as described in the previous section,
ps is the probability of signaling in a small unit of time, bs is the benefit
received from a response by the receiver, and ns is the benefit received when
there is no response (Table 1). Notice that this formulation assumes that the
signaler receives no benefit from a false alarm. In mate choice, a false alarm
by a receiver would consist of mating with a partner other than signaler.

For any level of the receiver’s threshold there exists an optimal level of
signaling (exaggeration) by the signaler, the level that maximizes the sig-
naler’s expected utility. At lower levels of exaggeration, the signaler evokes
too few responses, and at higher levels, it incurs too high a cost in survival.
The optimal level of signaling (exaggeration) as a function of the receiver’s
threshold can be calculated by finding the solution to the partial differential



R.H. Wiley / Behaviour 150 (2013) 957–993 969

equation,

∂Us/∂e = 0, t = constant,

and checking the second derivative or inspecting the contour of Us = g(e)

for constant t . This solution can only be found by numerical methods, again
as implemented in Mathematica 8.0.4 (see above).

2.4. The receiver’s and signaler’s joint optimum

So far this extension of signal detection theory has derived the overall utilities
for a signaler and an appropriate receiver. Each of these utilities is a unique
function of both the receiver’s threshold and the signaler’s exaggeration:

Ur = f (t, e); Us = g(t, e).

To find any joint optimum, it is necessary to search for points at which the re-
ceiver’s optimal threshold and the signaler’s optimal exaggeration coincide.
These joint optima occur at the intersections of the two curves, t∗ = f (e)

and e∗ = f (t), with an asterisk indicating an optimum. A joint optimum
represents a particular combination of signaler’s exaggeration and receiver’s
threshold that produce local maxima for both parties’ utilities. A joint opti-
mum is, thus, a Nash equilibrium for an interaction with the relevant param-
eters. Each party would do less well by unilaterally perturbing its behavior.

Depending on the receiver’s and signaler’s parameters, there were 0–2
such joint optima, as explained below. In all cases with two joint optima, one
had lower utility for both sender and receiver and occurred at a combination
of lower exaggeration of the signal and lower threshold by the receiver. To
find the unique optimum (in cases with just one) or the more advantageous
optimum (in cases with two optima), the present implementation in Mathe-
matica 8.0.4 searched the level of exaggeration downwards to find the point
at which (1) the two parties’ optima coincided within a precision of <1%
and (2) they both had higher utility than any second joint optimum.

Once a procedure was available for finding the most advantageous joint
optimum for signaler and receiver, it was possible to explore the sensitivity
of this optimum to perturbations of the parameters. This analysis explores
in particular the relative magnitudes of the receiver’s four payoffs and the
signaler’s cost and benefit. In each case, plots of a series of joint optima
show how the joint optimum changes as each parameter changes. Because
the possibilities are large, the present analysis focuses on situations that
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seem plausible for many cases of mate choice. For comparison, there is also
briefer consideration of plausible cases of a warning call in the presence of a
predator.

2.5. Parameters for communication during mate choice and warning calls

The receiver’s parameters are predicted to differ contrastingly in these two
situations. As described earlier (Wiley, 1994), mate choice is likely to result
in a high threshold for response, adaptive choosiness, because false alarms
by a receiver (choice of a suboptimal mate) have lower payoffs than missed
detections (failing to respond to an optimal mate). A false alarm could re-
sult in a major reduction in a female’s reproductive success, while a missed
detection would result in continued searching, with some loss of time and
exposure to risks, but with only a minor reduction in a female’s reproductive
success. In mate choice, the female’s task is discriminating between optimal
and suboptimal potential mates. The presence of the latter are the predomi-
nant forms of noise for this case of communication.

In contrast, warning signals are predicted to be associated with a low
threshold for response and low exaggeration of signals, adaptive gullabil-
ity (Wiley, 1994). In this case, a missed detection (failing to respond to a
warning) would expose the receiver to a predator, while a false alarm (tak-
ing cover in the absence of a predator) would result in some loss of time,
for instance for feeding or interacting with potential mates. The payoffs for
missed detections and false alarms, therefore, contrast with the situation in
mate choice.

Although mate choice and warnings illustrate contrasting payoffs for re-
ceivers, other forms of communication have their own relationships among
the payoffs for the four possible outcomes a receiver faces. Figure 5 is a
proposal for arranging plausible relationships of these payoffs in different
situations. The payoff for a correct rejection (no response when no signal is
present), rr, is set to 1.0, so that the payoffs for the remaining three outcomes
are scaled to the expected utility of this one. The utility of a correct rejection
is presumably similar to the utility of life in the absence of communication
(no signals, no responses). With this scaling, the relative payoffs for remain-
ing outcomes, along with the probability of a signal, determine the receiver’s
utility of participating in communication, relative to the utility of life in the
absence of communication.

The following sections consider conditions for mate choice in which the
payoff for a correct detection, dr, takes values of 1.5, 2 and 3, while the
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Figure 5. Plausible values for the relative payoffs for the four possible outcomes for a receiver
in a variety of situations for communication. The four outcomes (see Figure 2) are represented
by d , m, f and r , and their relative payoffs in each situation are indicated by their positions
on separate scales. Each payoff (advantage minus disadvantage for the receiver’s survival ×
fecundity) is proportional to the payoff for a correct rejection in the relevant situation. This
payoff for no response when there is no signal is tantamount to life’s payoff in the absence
of communication in this situation. With pR = 1, then usually pD > 1, 0 < pF < 1, and
0 < pM < 1. Within these limits, the magnitudes of plausible payoffs vary with the situation.
Because only two points (0 and 1.0) are stipulated on these scales, the scales need not be
linear. There are no measurements for all four payoffs in any case of communication that I
know of, so the values suggested here are no more than plausible hypotheses.

payoff for a false alarm, fr, takes values of 0.1, 0.5 and 0.9 (all payoffs
relative to the payoff for R, as just explained). The payoff for a missed
detection, mr, is set at 0.9 (a 10% reduction compared to rr as a result of
lost time and increased risk of further searching). In contrast, conditions for
warning signals have payoffs for correct detections of 0.8, 1.0 and 1.5, and
for missed detections of 0.1, 0.5 and 0.9. The payoff for a false alarm in this
case is set at 0.95.

This approach makes no attempt to justify these values because none has
ever been measured. It is unlikely that all cases of mate choice or of warning
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signals would have relative parameters matching these figures. Nevertheless,
these parameters seem plausible for at least some cases of mate choice and
warning signals.

The signaler’s parameters also have a large influence on the nature of com-
munication. The present analysis considers a range of costs for producing a
signal and benefits received by a signaler if an appropriate receiver responds.
For mate choice, the signaler’s benefit from a response, bs, takes values from
1.5 to 8. The marginal cost of producing a signal, cm, takes values of −0.001,
−0.01 and −0.05. For warning signals, the signaler’s benefit is set at 1.5 and
its marginal cost of exaggeration at −0.01. The receiver’s payoff for a false
alarm, fr, in this case is set at 0.99. The payoff for a correct detection (avoid-
ing contact with a predator), dr, takes values of 0.8, 1.0 and 1.5, and the
payoff for a missed detection (lost time), mr, takes values of 0.1, 0.5 and 0.9.
The payoffs for a false alarm and for a missed detection, therefore, contrast
with the case of mate choice.

Another potentially critical difference between these two situations is the
probability (1/frequency) of a signal, ps. In this analysis, this parameter is
set at 0.5 for mate choice (Table 1) and takes values of 0.01 and 0.001 for
warning signals.

Default values for other parameters are presented in Table 1. In the cases
of mate choice and warning signals considered here, it is assumed that a
signaler does not benefit from a false alarm by a receiver (although in some
cases of communication this possibility could arise). The analyses here also
assume that the appropriate receiver is paying attention all of the time and is
within range of the signaler.

Note that these models for noisy communication address the conse-
quences for each instance of communication (each time a receiver checks
its sensor or a signaler produces a signal). Depending on what constitutes a
signal, many forms of communication can consist of hundreds or thousands
of such instances in the life of an individual. On the other hand, some signals
might occur once in a lifetime (constructing a display court, for instance).

3. Results

The first sections below present the utilities and optima for a receiver’s
threshold and a signaler’s exaggeration for parameters that seem plausible
for mate choice (Table 1). Then a comparison is made with plausible situa-
tions for warning signals.
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3.1. Mate choice: the receiver’s utility

For any set of parameters for the payoffs of the four possible outcomes for a
receiver and for the probability of a signal, the receiver’s utility is a function
of its threshold for a response, t , and the signal level in relation to the noise,
also called the exaggeration of the signal, e. Ur as a function of t and e is the
adaptive landscape for a receiver’s performance (Figure 6).

For any mean level of the signal (exaggeration), the utility of the receiver’s
threshold depends on its location (Figure 7). For a threshold close to 0 (the
mean level of noise), the receiver’s utility is usually low (≈1). A low thresh-
old does a poor job of separating signal and noise, so many false alarms
result. As the threshold increases, the receiver’s utility increases to a max-
imum at some value below the level (exaggeration) of the signal. Higher
thresholds result in a drop in the receiver’s utility, because these thresholds
exclude many correct detections. Nevertheless, at high levels of the receiver’s
threshold, the receiver’s utility changes only slightly with changes in the
location of its threshold. The increased discrimination between signal and
noise is offset by the decreased probability of correct detections. The drop
is more pronounced the higher the payoff for a correct detection (Figure 6).
It is also slightly more pronounced the higher the payoff for a false alarm,
because then the cost of a mistake is less. Recall that all payoffs in these
analyses are scaled in relation to rr = 1.0, so fr < 1 and dr > 1.

A striking feature of the receiver’s utility are the large domains in which
it changes little with either the location of the threshold or the mean exag-
geration of the signal. In these domains the trade-off faced by the receiver
each time it decides to respond or not dominates its utility. Small changes in
threshold or exaggeration result in counteracting changes in the probabilities
of correct detections and false alarms. When the threshold < signal exag-
geration, pD decreases with increasing t less rapidly than does pF (∂pD/∂t is
less negative than ∂pF/∂t). When the threshold > exaggeration, this relation-
ship reverses. The receiver’s utility, thus, increases slowly as the threshold
approaches the mean level of the signal, drops near this level, and then con-
tinues to drop slowly beyond the mean level of the signal. Overall the surface
of Ur is relatively flat on either side of a locus of points along a diagonal line
with a slope approximately equal to 1. Figure 7 shows the optimal threshold
for three levels of exaggeration (mean level of signal), when payoffs dr = 2
and fr = 0.5 (see Table 1 for default values of other parameters for mate
choice).
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Figure 6. Contours of the receiver’s utility, UR, as a function of signal exaggeration and
the receiver’s threshold. The five contours represent (from thickest to thinnest) UR = 1.001,
1.01, 1.06, 1.10 and 1.248, respectively. The highest value is close to the maximum for the
conditions represented. The lowest value is set just above 1.0, because UR > 1.0 over the
entire plot in each case. The two columns show contours with dR = 1.5 and 3.0; the three rows
show them with fR = 0.1,0.5, and 0.9. The contours show the relatively steep rise diagonally
across each plot (with a slope ≈ 1) and in some cases also with very low thresholds. With
dR = 1.5 there is also an indication of a diagonal ridge of maxima. A similar ridge is much
weaker with dR = 3.0.



R.H. Wiley / Behaviour 150 (2013) 957–993 975

Figure 7. The receiver’s utility, UR, as a function of its threshold for three levels of signal
exaggeration. For all plots, dR = 2, fR = 0.5, and other parameters have default values for
mate choice (Table 1). In each of these cases there is a single maximum for the receiver’s
utility.

For some sets of parameters, Ur = f (t, e) has only a weak maximum
(Figure 6, right), but in other cases, especially with dr and fr both small,
there is a clear diagonal locus of maxima with t < e (Figure 6, left).

3.2. Mate choice: the signaler’s utility

For the signaler, the parameters affecting its performance (the marginal cost
of producing a signal, the payoffs when an appropriate receiver responds or
does not, and the probability of producing a signal) define its expected utility
as a function of the exaggeration of its signal and the receiver’s threshold.
For any exaggeration (mean level of the signal), the receiver’s threshold
determines the probability of a response to the signal. The signaler’s utility,
Us = g(t, e), like the receiver’s utility, Ur = f (t, e), is a diagonal locus of
maxima with e approximately equal to t (Figures 8 and 9).

For any level of the receiver’s threshold, increasing the mean level of the
signal at first increases the probability of responses (correct detections) by
the receiver (Figure 9). The increased probability of responses is, however,
balanced by the increased cost of producing a signal with a higher mean
level. Near the point t = e, the increase in the probability of a response is
greatest. A maximum is reached a point where e ≈ t . Further increases in e

result in a slow decline in the signaler’s utility, as progressively less increase
in responses is outweighed by a steadily increasing cost. Figure 9 shows
the signaler’s optimal exaggeration for three different levels of the receiver’s
threshold, when dr = 2 and fr = 0.5 (other parameters have default values
for mate choice, Table 1).
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Figure 8. Contours of the signaler’s utility, US, as a function of signal exaggeration and the
receiver’s threshold. The six contours represent (from thickest to thinnest) UR = 1.00, 1.01,
1.06, 1.10, 1.4 and 1.48, respectively. The highest value is close to the maximum for the
conditions represented. The lowest value at 1.0 indicates that in the upper left corner of each
plot it does not pay for a potential signaler to produce signals (US < 1.0). The two columns
show contours with bS = 1.5 and 4.0; the three rows show them with cm −0.001, −0.01
and −0.05. The contours show the relatively steep rise diagonally across each plot (with a
slope ≈ 1) and the limit beyond which further exaggeration does not pay.
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Figure 9. The signaler’s utility, US, as a function of its exaggeration for three levels of the
receiver’s threshold. For all plots, dR = 2, fR = 0.5, and other parameters have default values
for mate choice (Table 1). In each of these cases there is a single maximum for the receiver’s
utility, although the shoulders have low slopes. At high levels of the receiver’s threshold, low
levels of exaggeration do not pay (US < 0 with a slight negative slope).

Like the receiver’s utility, the signaler’s utility includes large domains in
which changes in t or e result in relatively little change in utility, as a result
of trade-offs between costs and benefits. The locus of maxima is again a di-
agonal line with a slope approximately equal to 1. Note that the signaler’s
utility and its maxima do not depend on the payoffs for the four possible
outcomes a receiver faces. It does depend on the probabilities of these out-
comes, which are determined by the mean level of the signal (exaggeration)
in relation to the noise.

3.3. Mate choice: the optima for receiver and signaler

Differentiating Ur = f (t, e) with respect to e and solving for ∂Ur/∂e = 0
yields the locus of optimal thresholds for any set of parameters for the pay-
offs of the receiver’s four possible outcomes and the probability of a signal
(Figure 10, solid lines). These optimal thresholds either increase monotoni-
cally with exaggeration of the signal or in some cases have an abrupt concave
shape as a result of a sharp rise in the optimal threshold for e < 1. As the fig-
ure shows, this concave shape arises when the payoffs for both false alarms
and correct detections (fr and dr) are relatively low (Figure 10, top), so a high
threshold at low levels of signal exaggeration avoids the high costs of false
alarms. With a relatively high payoff (low cost) for false alarms, the optimal
threshold remains 0 until signal exaggeration exceeds a minimal value near
e ≈ (1,2). Below this minimal exaggeration, it does not pay for the receiver
to discriminate between signal and noise, because a threshold < 1 results
in too many missed detections. Note that when the optimal threshold = 0 it
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does not pay for a receiver to participate in communication. Instead, in these
cases, it is better to respond regardless of the presence or absence of a signal.

Above this minimal exaggeration, the receiver’s optimal threshold in-
creases approximately linearly with signal exaggeration with a slope < 1
and t < e, as previous inspection of the adaptive landscape for Ur = f (t, e)

suggested (Figure 8). At higher exaggeration of a signal, the receiver’s opti-
mal threshold diverges progressively from t = e. The lower tail of the PDF
for the level of the signal always exceeds the upper tail of the PDF for the
level of noise. In this region, ∂t/∂e < 1 means that more of the signal is
captured in relation to noise as exaggeration increases.

The signaler’s optimal exaggeration for any set of its benefits and costs
and the probability of a signal is obtained by differentiating Us = g(t, e)

with respect to t and solving for ∂Us/∂t = 0 (Figure 10, dashed lines). At
very low thresholds for the receiver, it pays a signaler to increase the exag-
geration of its signal rapidly. Above a value of the receiver’s threshold near
t ≈ (2,3), the signaler’s optimal exaggeration increases linearly with the re-
ceiver’s threshold with a slope ≈ 1 but with t < e, as previous examination
of the surface Us = g(t, e) suggested (Figure 8).

For any set of parameters, the joint optima for receiver and signaler occur
where the lines of optima for each party intersect. By switching the axes
for the signaler’s optimal exaggeration, e∗ = f (t) → t = f (e∗), and plotting
the result with the receiver’s optimal threshold t∗ = f (e), it is possible to
visualize the joint optima where the lines cross at points (t = t∗, e = e∗).

Figure 10. The receiver’s optimal threshold in relation to the signaler’s optimal exaggeration.
Each plot shows the locus of the signaler’s optimal exaggeration as a function of a receiver’s
threshold (dashed lines) and the converse, the locus of the receiver’s optimal threshold as a
function of the exaggeration of a signal (solid lines). In each plot the three solid lines show
the receiver’s optima for three values of the payoff for a false alarm (fR = 0.01, 0.05 and
0.09 with thinner to thicker lines, respectively). The three rows show optima for three values
of the payoff for a correct detection (dR = 1.5, 2 and 3, respectively), the left column shows
the signaler’s optima for three values of the signaler’s benefit from responses by the receiver
(bS = 3, 2 and 1.5 with thicker to thinner lines, respectively), and the right column shows
the signaler’s optima for three values of the marginal cost of exaggeration (cm = −0.002,
−0.01 and −0.05, respectively). In many cases the loci for the receiver’s optima and for the
signaler’s optima cross. These intersections indicate the Nash equilibria for a signaler and
receiver under the respective conditions. In some cases, the loci for optima do not cross,
although they converge and diverge near points of attraction (see Figure 11). There are also
intersections at very low values of thresholds and low values of exaggeration (see Figure 11
and discussion in the text).
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These plots (Figure 10) reveal three possible cases for these joint optima:
either 0, 1, or 2 optima, depending on the parameters for the receiver’s and
signaler’s performance.

A single joint optimum occurs in those cases in which the locus of the
receiver’s optima is concave. As explained above, this case occurs when the
payoffs for correct detections and false alarms, dr and fr, are both relatively
low (low benefit for correct detection, high cost for false alarm).
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Two joint optima occur with many sets of parameters, as a result of the up-
ward curvature of the signaler’s optima at thresholds near 0. One of the joint
optima, thus, occurs with a low threshold and low exaggeration. The second
joint optimum occurs at a much higher level of threshold and exaggeration,
as a result of the steeper slope of the locus of optimal exaggeration. At each
of these two points, neither party can improve its utility by perturbing its be-
havior (altering its threshold or the exaggeration of its signals, respectively).
The lower point is often close to t = 0, so the receiver is close to no partic-
ipation in communication at all (responding without regard to the presence
or absence of a signal).

With some sets of parameters, the loci of optima for the receiver and the
signaler do not intersect, and there is no joint optimum, although the lines of
optima for the two parties converge and diverge as t or e increase. Figure 10
suggests that this eventuality occurs when the receiver’s payoffs for false
alarms and correct detections are high (cost of a false alarm is low) and the
signaler’s benefit from a response is high (high dr and fr, low bs).

The course of evolution through these joint adaptive landscapes as func-
tions of t and e is best revealed by a plot of streamlines and vectors
for the partial derivatives ∂Ur/∂e and ∂Us/∂t (procedures VectorPlot and
StreamPlot in Mathematica 8.0.4 produce Figure 11). The vectors in this
plot (short arrows with the magnitude of the vector indicated by the size
of the arrow) are the joint selection gradients on the behavior of receivers
and signalers, as determined by the parameters of their performances (costs,
benefits, probability of signals). The streamlines (long arrows that sum the
vectors over longer trajectories) are, therefore, the expected trajectories of
evolution. Notice that in all cases analyzed the arrows of evolution converge
at a joint optimum corresponding to the upper optima in Figure 10. In some

Figure 11. Streamlines and vectors for the gradients of the signaler’s and receiver’s utilities as
functions of the receiver’s threshold and signal exaggeration. The vectors (short arrows) show
the gradients (∂Ur/∂e, ∂Us/∂t), with larger arrows for steeper gradients. The streamlines
(longer arrows) result from sums of vectors. The vectors, thus, indicate the joint selection
gradients on receivers and signalers under the conditions specified. The streamlines suggest
the trajectories of evolution. For all plots, the payoff for a false alarm, fr = 0.5 and the
marginal cost of exaggeration, cm = −0.01. Other parameters are specified in the headings
for each plot or have default values (Table 1). Points of convergence are joint optima for the
receiver’s threshold and signal exaggeration in each condition. Compare these optima with
the same ones displayed differently in Figure 10.
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cases (Figure 11, upper right, lower left) at levels of t and e < 2, communi-
cation collapses as t∗ → 0. Notice that when the lines of optima do not cross
(Figure 10, lower left, bs = 3, fr = 0.9), there is nevertheless an attraction
point in the joint adaptive landscape (Figure 11, lower left), at a point above
closest approach of the lines for the two parties’ optima.
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In all cases, the joint optima have asymmetrical slopes, with weak se-
lective gradients on one side and strong ones on the other, a result of the
large domains of nearly flat landscape for the functions, Ur = f (t, e) and
Us = g(e, t) (Figures 6 and 8). Nevertheless, from all directions around these
joint optima, perturbations of either party’s behavior would lower their utili-
ties so that the selection gradients would tend to move their interaction back
to the joint optimum. These points are, therefore, Nash equilibria for the in-
teraction. A comparison of Figures 6, 8 and 11 reveals that these equilibria
are not necessarily Pareto optima, the points of maximal utility for either
party alone.

3.4. Mate choice: influences of the receiver’s and signaler’s parameters on
the joint optimum

This initial analysis of noisy communication in mate choice explores the con-
sequences of variation in four parameters: the receiver’s payoffs for correct
detections and false alarms and the signaler’s marginal cost of signaling and
benefit from a response by an appropriate receiver. The remaining parame-
ters are set to default values (Table 1).

3.4.1. Receiver’s payoffs
Recall that in communication for mate choice, a female receiver makes a cor-
rect detection when she responds to an optimal male and a false alarm when
she responds to a suboptimal one. For simplicity the present analysis assumes
only two categories of males, which produce two varieties of signals that are
not always separated by females. The suboptimal males’ signals, therefore,
are the noise in communication between females and optimal males.

This analysis considered the following possibilities for the receiver’s pay-
offs: dr = {1.5,2,3} and pF = {0.1,0.5,0.9}. As explained above, by setting
the payoff for a correct rejection, rr = 1.0, the remaining payoffs are scaled
in relation to this one. By choosing an optimal mate, a female’s payoff (her
survival × fecundity) is 1.5, 2, or 3 times her payoff if she kept searching.
By choosing a suboptimal mate, her payoff is 0.1 (high cost), 0.5, or 0.9 (low
cost) times her payoff otherwise.

Inspection of the plots in Figures 10 and 11 shows that, when a receiver’s
payoff for a correct detection increases, the upper joint optimum for commu-
nication moves to a lower threshold by the receiver and a lower exaggeration
of the signal (summarized in Figure 12). Likewise, when a receiver’s payoff
for a false alarm increases (cost decreases), the joint optimum also moves to
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Figure 12. The Nash equilibria (upper equilibrial points in Figure 10) for the receiver’s
threshold and the signaler’s exaggeration for representative combinations of parameters for
mate choice (upper two plots) and warning signals (lower two plots). Relevant parameters
are specified in the legends; all other parameters have default values for the relevant situation
(Table 1).

a lower threshold and a lower exaggeration. When the payoff for a correct
detection is high and the cost of a false alarm is low, it pays for receivers
to use low thresholds in order to increase the number of correct responses,
despite a concomitant increase in the number of false alarms. Thus, the great-
est exaggeration of signals and highest threshold for response occurs with a
low payoff for correct detection and a high payoff for false alarm, in other
words a situation in which the consequences of mate choice for a female
are the least pronounced (little difference between the benefit of choosing an
optimal mate and the cost of choosing a suboptimal one).
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3.4.2. Signaler’s benefit and cost
The analysis considered the following possibilities for the signaler’s cost
and benefit: cm = {−0.001,−0.01,−0.05} and bs = {2,4,6,8}. The cost
of producing a signal reduces the signaler’s survival × fecundity by the
marginal cost of exaggeration times the exaggeration of the signal, cme. The
benefit a signaler receives when an appropriate receiver responds increases
its survival × fecundity by the factor bs. Recall that this analysis applies to
each instance of communication, each time a receiver samples its sensor or a
signaler produces a signal. Depending on what a signal is taken to represent,
some of the marginal costs of signaling are unlikely. A signal, such as a bird’s
song, produced hundreds or thousands of times in an individual’s life can
hardly have a marginal cost of −0.05. On the other hand, constructing and
maintaining a display court might represent a single signal with a marginal
cost far greater than −0.002.

Inspection of the upper optima in Figures 10 and 11 reveals that, not sur-
prisingly, decreasing the marginal costs of signals or increasing the benefits
of a response by a receiver increase both the optimal exaggeration of signals
and the receiver’s optimal threshold.

3.5. Comparison of mate choice and warning signals

The interest of this comparison, as explained above, comes from the con-
trasting relationship of the payoffs for the two possible errors by receivers,
false alarms and missed detections. For warning signals, it is a missed de-
tection that might have serious consequences, rather than a false alarm, as in
the case of mate choice. In addition, the probability of a signal is often much
lower for warning signals than for advertising signals. Finally, it is often dif-
ficult to identify the signaler’s benefit from a response to a warning signal. In
some cases, it might consist entirely of indirect benefits from kin selection.
It is also possible that there is some direct benefit from notifying a predator
that the signaler has spotted it.

For this analysis, it was assumed that a false alarm would cost little (have
relatively high payoff) as a result of some time or opportunity lost for feeding
or interacting with a mate (fr = 0.95). The analysis then considered dif-
ferent payoffs for correct detections and missed detections by the receiver:
dr = {0.8,1.0,1.5} and mr = {0.1,0.4,0.7}. A correct detection of a warn-
ing in the presence of a predator might have a payoff less than a correct
rejection in the absence of a warning. Alternatively, it might have no ef-
fect or, if predators could strike without warning, it might increase survival.
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The consequence of a missed detection consists of exposure to a predator,
so mr = 0.1 would indicate dire consequences and 0.7 more modest ones.
Also investigated were the benefit for the signaler provided the receiver re-
sponded, bs = {1.2,1.4,1.8}, and levels of the marginal cost of exaggeration,
cm = {−0.001,−0.01,−0.05}.

Increases in dr produced upper joint optima with lower exaggeration of the
signal and lower thresholds for the receiver, just as in the case of mate choice
above (Figure 12). Increases in mr (higher payoff, lower cost) produced the
opposite effect, upper joint optima with higher exaggeration and thresholds.
Just as in the case of mate choice, a low payoff for a correct detection and a
high one (low cost) for a missed detection resulted in the greatest exaggera-
tion and highest thresholds. The plausible values for these parameters were
less dispersed than for mate choice and, thus, resulted in smaller differences
in the joint optima.

Again, not surprisingly, higher benefits for the signaler from responses
by the receiver (bs) and lower marginal costs of exaggeration (cm) resulted
in joint optima with higher exaggeration and higher thresholds. A lower
probability of signals (ps) also resulted in optima with higher exaggeration
and higher thresholds.

The highest exaggeration of signals for mate choice occurred with {low
dr, low fr, low cm, high bs} and for warning signals with {low dr, low mr,
low cm, high bs, low ps}.

The actual values for optimal exaggeration and threshold in mate choice
and warning signals were comparable in many cases. In both situations the
highest joint optima were close to e∗ = 6 and t∗ = 3. These values, as ex-
plained earlier, are scaled to the standard deviation of noise in the receiver’s
sensor. Exaggeration = 6 is, thus, six times the standard deviation of the
receiver’s noise. The lowest upper optima have exaggeration and thresholds
near e∗ = 4 and t∗ = 2. Two situations produced exceptionally high joint
optima: mate choice when the marginal cost of exaggeration was low; and
warning signals when the probability of a signal in the presence of a threat
was low. Exaggeration of signals, according to this analysis, should be great-
est under conditions that make measuring the marginal cost of signals most
difficult.
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4. Discussion

This analysis was intended to explore the consequences of noise for the evo-
lution of communication. The inevitable trade-offs faced by both signalers
and receivers during noisy communication frustrate simple intuitions. Do the
trade-offs for receivers as well as signalers result in optimal thresholds for re-
ceivers and optimal exaggeration of signals? Do these individual optima ever
coincide to produce joint optima for the interaction of signaler and receiver?
Can noise explain differences in the exaggeration of signals in different cir-
cumstances? Can it explain the stability of honesty in communication? In the
process of the investigation other issues arose as well. How are costs related
to honesty in communication? What are the differences between mate choice
and other forms of communication?

One result is clear. There is much more to learn about the evolution of
communication in noise. The present model included only the minimal num-
ber of parameters to characterize signal detection in noise. Nevertheless, few
of these parameters have ever been considered in studies of natural com-
munication. The benefits to receivers of responding to signals have received
some attention, but not the probability of correct detection. The costs and
benefits to signalers have been addressed, but as discussed below it is clear
that the potential complexities require much more investigation. Other pa-
rameters, the probabilities of the four possible outcomes for receivers, the
payoffs for false alarms and missed detections, the probabilities of signals,
have not been considered in studies of adaptations in communication.

It is just as surprising that these issues have never arisen in engineering
applications either. There is a large body of work on optimal encoding of
signals, but none that I know of on the costs and benefits of signal produc-
tion and detection and their relationship. Yet the implications of noise for
the evolution of communication apply just as well to the human design of
communication. Most of the conclusions below apply to both evolutionary
and economic scenarios.

As for the present model, although the number of parameters is minimal,
it is nevertheless large. This report has only just begun exploring the con-
sequences of variation in these parameters. The following sections address
some of the questions raised above. They start with two old questions about
the evolution of communication: the role of the signaler’s costs and the sta-
bility of honesty.
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4.1. Costs and benefits of signals and the stability of honesty

By formulating the costs and benefits of signals, the present analysis has
clarified and also complicated previous conclusions about the role of costs in
the evolution of honesty in signaling. If receivers cannot directly assess sig-
nalers’ qualities and, therefore, only respond to the level (exaggeration) of
their signals, and if signalers differ in intrinsic survival or marginal costs of
exaggeration, signals can honestly indicate these aspects of quality. Figure 4
(top and middle) plots these relationships in a way that makes it clear that,
if each signaler optimizes its level of exaggeration, by maximizing its sur-
vival × fecundity, then signals can honestly indicate each signaler’s quality.

The present analysis adopted this approach for a signaler’s cost as a func-
tion of the exaggeration of its signals. If intrinsic survival is the signaler’s
survival in the absence of signaling (s0, survival when exaggeration = 0),
then a constant marginal cost of exaggeration (cm) results in a signaler’s sur-
vival that decreases linearly with the exaggeration of signals: ss = s0 + cme.

Although this graphical approach can clarify the relationship between a
signaler’s costs and honesty in signaling, it also raises some neglected ques-
tions. The absolute cost, relative cost, and marginal cost of signals differ in
every case in Figure 4 yet are rarely distinguished in discussions of the costs
of signaling. In addition, there has been much discussion of different forms
of ‘handicaps’, with an emphasis on whether or not costs of signaling are
paid up front or not (Maynard Smith & Harper, 2003). This distinction can
be captured by supposing that survival is a nonlinear function of signal exag-
geration, concave either upward or downward. In addition, intrinsic survival
and signaling costs might not vary independently.

Arguments about honesty also assume that the signaler’s benefit is a
monotonically increasing function of signal exaggeration. The analysis of
noisy communication has shown how the probability of a receiver’s response
can increase monotonically with the signal’s exaggeration, as a result of the
receiver’s adjusting its trade-off between missed detections and false alarms.
Noise in communication is, thus, sufficient to explain a monotonic relation-
ship between a signaler’s benefit and the exaggeration of its signals.

Nevertheless, this relationship is not simple. A signaler benefits from a
receiver’s response, but the probability of a response depends on the location
of the receiver’s threshold as well as the exaggeration of the signal. The prob-
ability of a response, therefore, does not depend in any simple way on the
exaggeration of the signal. For instance, as the level of a signal increases, the
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probability of correct detection falls more steeply than the probability of false
alarm (see Figure 1). Thus, the proportionate change in correct responses,
pD/(pD + pF), for any constant change in the level of a signal decreases
with the level of the signal. In other words, a constant proportionate change
in this ratio requires a larger proportionate change in signal level at higher
signal levels, a result qualitatively similar to Weber’s Law. More work is
needed to examine the precise correspondence between the present model of
a receiver’s decisions in noise and other models of discrimination or decision
(for instance, Kacelnik & Brito e Abreu, 1998).

Extending the graphical model of signaling suggests more complexity in
the relationship between costs and honesty than previously supposed (Fig-
ure 4, bottom). For instance, honesty can result whether males differ in
intrinsic (s0) or in marginal survival (cm) (see Getty, 1998; Wiley, 2000).
A sufficient condition for this conclusion is that the functions for survival of
signalers cannot cross. Yet this is not a necessary condition (Figure 4, bot-
tom) when signalers with low intrinsic survival also have low marginal costs
of exaggeration. This situation might arise if there were a developmental
trade-off between intrinsic survival and exaggerated signals. How to inter-
pret this situation would then depend on whether a signaler’s quality was
more accurately indicated by high intrinsic survival or low marginal costs
of signaling. Furthermore, males of different quality might accrue benefits
at different rates. Suppose for instance, as a result of another developmental
trade-off, that males with low intrinsic survival fertilize more eggs of fe-
males they attract. Their benefits of signaling would have a higher slope than
that of males with high intrinsic survival. The interpretation of this situation
would depend on whether quality was more accurately indicated by intrin-
sic survival or ability to fertilize eggs. The best indicator of quality, in every
case, might instead be a male’s expected survival × fecundity. So far as I
know, none of these possibilities has received attention previously. Costs of
signaling are related to honesty in communication in complex ways because
of the interacting effects of a signaler’s innate survival, marginal costs of
exaggeration, and benefits of signaling.

An important conclusion from these suggestions and from the analysis of
noisy communication is that the receiver’s behavior is at least as important
for explaining the exaggeration of signals and honesty in communication as
are the signaler’s costs. Indeed, the receiver’s threshold, optimized in relation
to the probabilities and payoffs of the four possible outcomes of any decision
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to respond or not, sets the conditions that determine the optimal exaggeration
of signals and, thus, how much they cost.

The process of optimizing the individual parties’ utilities during commu-
nication in noise often results in joint optima at which both parties benefit
overall (with expected relative utilities > 1). These are Nash equilibria, com-
binations of behavior which neither receiver nor signaler can unilaterally
perturb without decreasing its utility. They, therefore, represent stable condi-
tions for communication with both parties benefiting. Nevertheless, at these
equilibria receivers make errors, both false alarms and missed detections, and
signalers do not always evoke responses from appropriate receivers. Such
communication is, therefore, stable and honest on average, despite instances
in which receiver or signaler or both do not benefit.

4.2. De novo evolution of signals

The plots of streamlines also clarify the selection gradients in the upper left
corners, where the receiver’s threshold is high and exaggeration approaches
0 (Figure 11). This is the situation for the initial evolution of a new signal.
Presumably an incipient signal would have low exaggeration, and receivers
would have little tendency to respond to it. Under these conditions, the se-
lection gradients, although weak, uniformly stream to exaggeration = 0, or
a collapse of communication.

The evolution of a new signal, therefore, has a hurdle to overcome. It
requires either a preadaption or exaptation of a low threshold for response to
the new signal, or it requires a behavior with an initial condition that already
has a high contrast with noise. The first precondition might result from a
sensory bias evolved in another behavioral context (Ryan & Keddy-Hector,
1992); the latter precondition might result from a previously irrelevant but
conspicuous behavior, such as a displacement activity (Tinbergen, 1952).
Either way it has long been recognized that the evolution of communication
de novo must surmount a hurdle (for instance, Lande, 1981; Kirkpatrick,
1982, see Wiley, 2002, for further discussion).

4.3. Exaggeration of signals

This analysis of noisy communication has shown that the exaggeration of
signals depends on the parameters affecting both the receiver’s and the sig-
naler’s behavior. For both mate choice and warning signals different com-
binations of plausible parameters can produce at least 4-fold differences in
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exaggeration of signals and reach levels at least 6 times the standard devia-
tion of noise in the receiver’s sensor.

It is important to realize that this analysis did not include parameters for
attenuation of a signal during transmission, nor for variation in the signal
either at the source or as a consequence of propagation to the receiver. A pa-
rameter for attenuation would multiply the exaggeration of a signal at the
source required to achieve any exaggeration at the receiver. The consequence
of attenuation is, therefore, to raise the cost of signals for signalers, in order
to achieve the optimal exaggeration at the receiver.

This analysis of noisy communication did not confirm the degree of con-
trast expected between levels of thresholds and exaggeration in signals in
mate choice and warning signals (Wiley, 1994). Some cases of mate choice
analyzed here do involve high levels of exaggeration and thresholds, but in
many cases these levels broadly overlap those predicted for warning sig-
nals (Figure 12). This situation remains a conundrum for future analyses.
If the relevant parameters were actually measured, would there be less con-
trast than we intuitively expect between such radically different situations
for communication? Or are the parameters selected for this initial analysis in
fact not realistic? Would other parameters produce greater contrast between
mate choice and warning signals in noisy communication?

One result of including noise in any analysis of the evolution of com-
munication is a clear prediction of the form that exaggeration should take.
Relevant exaggeration consists of changes in a signal’s properties that in-
crease contrast with noise. Unlike other explanations for the spread of a
receiver’s responses to signals, noisy communication makes the prediction
that receiver’s responses favor the evolution of signals that contrast with
noise from the position of the receiver. Investigation of adaptive signal de-
sign has suggested ways that signals can evolve to enhance contrast with
noise (Wiley & Richards, 1982; Endler, 1993; Brumm & Naguib, 2009).

Theories of sexual selection do not usually include such predictions about
which properties of signals should evolve. A few mathematical analyses
have indicated that traits with greater advantages (or lesser disadvantages)
for males should evolve preferentially (Heisler, 1984). Others have shown
that traits promoting mate choice have evolved to increase contrast with
the environmental background (Endler & Théry, 1996). An analysis of the
evolution of communication in noise makes it clear that the exaggeration of
preferred traits should usually follow this pattern.
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The evolution of arbitrary preferences (responses to signals with no ad-
vantages for male or female) is the only exception to this rule. Such pref-
erences cannot evolve if they have net costs (Pomiankowski, 1987). Any
costs of searching must be balanced by benefits of mate choice. Considering
the multiple payoffs and trade-offs for receivers in noisy communication, it
seems unlikely that the effects of all the relevant parameters would exactly
balance to yield no net cost nor gain (Ur = 0). Communication in noise, thus,
makes it even less likely than otherwise that arbitrary responses and signals
could evolve.

Although this analysis of noisy communication differs from sexual se-
lection in predicting the direction of evolution for signals, it concurs with
sexual selection in an important way. Despite the much fuller description of
the interaction between a signaling male and a responding female, in the end
this analysis shows how males with certain features mate with females with
complementary features. This nonrandom mating generates a genetic cor-
relation between any alleles associated with features of male signaling and
those associated with features of female responding. This genetic correla-
tion between signaler’s and receiver’s features can in certain circumstances
generate accelerating (run-away) evolution of communication (Lande, 1981;
Kirkpatrick, 1982). It is not clear whether or not Fisher had genetic corre-
lation in mind when he described sexual selection. Nor is it clear whether
or not he had frequency-dependent selection in mind, such as would ap-
ply to the evolution of all signals and corresponding responses, regardless
of mating between signaler and receiver (Wiley, 2000). It is clear now that
genetic correlation and accelerating evolution should apply to all cases of
mate choice that meet certain initial conditions, regardless of whether or not
signals are arbitrary or adaptive.

4.4. No perfection in communication

A fundamental conclusion from this analysis is that noisy communication
is never perfect. Receivers and signalers instead evolve to joint optima, at
which both parties benefit on average but at which both parties also fall
short of perfection. Receivers remain susceptible to false alarms and, thus, to
deception. Signalers remain incapable of evoking responses to every signal.
Responding falls short of perfection and so does signaling. The system of
communication is honest and stable, despite the occurrence of instances of
communication disadvantageous to signaler or receiver.
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From this point of view, the evolution of honesty in systems of communi-
cation is not surprising, but neither is the evolution of prevalent dishonesty
and deception. This conclusion should apply to economic as well as evolu-
tionary situations. We should not expect communication, of any sort, includ-
ing systems designed by humans with costs and benefits in mind, ever to
achieve perfection. The equilibrial condition for communication in noise is
honesty with errors.

Noise is therefore an inevitable part of communication. By assuming that
communication evolves in noise, this analysis shows that the evolution of
communication cannot escape it. Evolution does not lead to signalers and
receivers that perform ideally. Noise is inescapable.

Acknowledgements

My approach to investigating the evolution of communication has developed
over the past several decades as a result of discussions with many students
and colleagues in the Department of Biology at the University of North
Carolina, in the Triangle Behavior Seminar (UNC, Duke University and
NC State University), and in a course jointly taught in noisy conditions for
a decade with Steve Nowicki at Duke University. My wife, Minna Wiley,
has been the only continual source of support throughout this process. Carl
Gerhardt, Laura Miller and Maria Servedio provided helpful suggestions for
the manuscript.

References

Brumm, H. & Naguib, M. (2009). Environmental acoustics and the evolution of bird song. —
Adv. Study Behav. 40: 1-33.

Dawkins, R. & Krebs, J.R. (1978). Animal signals: information or manipulation? — In:
Behavioural ecology (Krebs, J.R. & Davies, N.B., eds). Blackwell Scientific, Oxford,
p. 282-309.

Endler, J.A. (1992). Signals, signal conditions, and the direction of evolution. — Am. Nat.
139: S125-S153.

Endler, J.A. (1993). The color of light in forests and its implications. — Ecol. Monogr. 63:
1-27.

Endler, J.A. & Théry, M. (1996). Interacting effects of lek placement, display behavior,
ambient light, and color patterns in three neotropical forest-dwelling birds. — Am. Nat.
148: 421-452.

Getty, T. (1998). Reliable signalling need not be a handicap. — Anim. Behav. 56: 253-255.



R.H. Wiley / Behaviour 150 (2013) 957–993 993

Grafen, A. (1990). Biological signals as handicaps. — J. Theor. Biol. 144: 517-546.
Green, D.M. & Swets, J.A. (1966). Signal detection theory and psychophysics. — Wiley,

New York, NY (reprinted with additions by Krieger, New York, NY, 1974).
Heisler, I.L. (1984). A quantitative genetic model for the origin of mating preferences. —

Evolution 38: 1283-1295.
Johnstone, R.A. & Grafen, A. (1992). Error-prone signalling. — Proc. Roy. Soc. Lond. B:

Biol. 248: 229-233.
Kacelnik, A. & Brito e Abreu, F. (1998). Risky choice and Weber’s law. — J. Theor. Biol.

194: 289-298.
Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. — Evolution 36:

1-12.
Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. — Proc. Natl.

Acad. Sci. USA 78: 3721-3725.
Macmillan, N.A. (2002). Signal detection theory. — In: Stevens’ handbook of experimental

psychology, 3rd edition, Vol. 4 (Pashler, H.E., ed.). Wiley, New York, NY, p. 43-90.
Macmillan, N.A. & Creelman, C.D. (1991). Detection theory: a user’s guide. — Cambridge

University Press, Cambridge (reprinted, Lawrence Erlbaum, Mahwah, NJ, 2004).
Maynard Smith, J. & Harper, D.G.C. (2003). Animal signals. — Oxford University Press,

Oxford.
Pomiankowski, A. (1987). The costs of choice in sexual selection. — J. Theor. Biol. 128:

195-218.
Ryan, M.J. & Keddy-Hector, A. (1992). Directional patterns of female mate choice and the

role of sensory biases. — Am. Nat. 139: S4-S35.
Tinbergen, N. (1952). “Derived” activities; their causation, biological significance, origin,

and emancipation during evolution. — Q. Rev. Biol. 27: 1-32.
Wiley, R.H. (1994). Errors, exaggeration, and deception in animal communication. — In:

Behavioral mechanisms in evolutionary ecology (Real, L., ed.). University of Chicago
Press, Chicago, IL, p. 157-189.

Wiley, R.H. (2000). Sexual selection and mate choice: trade-offs for males and females. —
In: Vertebrate mating systems (Apollonio, M., Festa-Bianchet, M. & Mainardi, D., eds).
World Scientific Publishing, Singapore, p. 8-46.

Wiley, R.H. (2006). Signal detection and animal communication. — Adv. Study Behav. 36:
217-247.

Wiley, R.H. (2013a). Communication as a transfer of information: measurement, mechanism
and meaning. — In: Information and influence in animal communication (Stegmann, U.,
ed.). Cambridge University Press, Cambridge, chapter 4.

Wiley, R.H. (2013b). Signal detection, noise, and the evolution of communication. — In:
Animal signals and communication (Brumm, H., ed.). Springer, Berlin, chapter 1.

Wiley, R.H. & Richards, D.G. (1982). Adaptations for acoustic communication in birds:
sound transmission and signal detection. — In: Acoustic communication in birds, Vol. 1,
Communication and behavior (Kroodsma, D.H. & Miller, E.H., eds). Academic Press,
New York, NY, p. 131-181.


